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Abstract

While recent Zero-Shot Text-to-Speech (ZS-TTS) models have achieved high natural-

ness and speaker similarity, they fall short in accent fidelity and control. To address

this issue, we propose zero-shot accent generation that unifies Foreign Accent Conver-

sion (FAC), accented TTS, and ZS-TTS, with a novel two-stage pipeline. In the first

stage, we achieve state-of-the-art (SOTA) on Accent Identification (AID) with 0.56 f1

score on unseen speakers. In the second stage, we condition ZS-TTS system on the

pretrained speaker-agnostic accent embeddings extracted by the AID model. The pro-

posed system achieves higher accent fidelity on inherent/cross accent generation, and

enables unseen accent generation.
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Chapter 1

Introduction

1.1 Motivation: Accent Matters in ZS-TTS

Recent advances in neural TTS systems have made it possible to generate speech, that

is indistinguishable from human recordings, for English single-speaker sentence-level

TTS, e.g. NaturalSpeech (Tan et al., 2024). Over the past few months, more recent

advances in ZS-TTS systems have enabled speech generation of any unseen speaker’s

voice in a 3-second audio clip, that is on-par quality with human recordings, e.g. Natu-

ralSpeech 3 (Ju et al., 2024) and VALL-E 2 (Chen et al., 2024). Despite these achieve-

ments, most ZS-TTS systems have focused on replicating speakers’ voices (Jia et al.,

2018) while largely ignoring accent variation. These systems are typically trained on

mostly American English data without accent conditioning or control. Such disregard

for accents and biased training leads to poor accent fidelity and no control over accents

in the generated speech (Wang et al., 2023a).

Generating speech of high accent fidelity is crucial in TTS, especially for those

communicating in a lingua franca like English or French. For native speakers (L1),

having their accents accurately represented preserves their linguistic identity, which is

integral to their personal and regional identity (Rosina, 1997). For non-native speak-

ers (L2), accurate and controllable accent generation is crucial for addressing accent

discrimination. TTS systems that can reproduce L2 speakers’ accent in media can al-

leviate their pressure to conform to native accents, allowing L2 speakers to retain their

linguistic identity (Gluszek and Dovidio, 2010). Additionaly, L2 speakers can bene-

fit from a more personalized and effective language learning through TTS systems in

Computer-Aided Pronunciation Training (CAPT), where L2 accents are converted to

native-like accents while preserving speaker identity (Felps et al., 2009; Agarwal and

1



Chapter 1. Introduction 2

Chakraborty, 2019).

Motivated by the poor accent generation in ZS-TTS as well as the social and moral

imperative for inclusive speech technology, we take an initiative to address accent-

related issues in ZS-TTS. Generating accented speech in a zero-shot manner has broad

and promising applications in personalised virtual assistants (Pal et al., 2019), movie

dubbing (Spiteri Miggiani, 2021), CAPT (Felps et al., 2009; Agarwal and Chakraborty,

2019), and etc. Our goal is to promote the inclusivity of ZS-TTS for speakers of non-

major accents.

1.2 Related Work: FAC, Accented TTS, and ZS-TTS

Previous studies on generating accented speech can be categorised into three areas,

with a comparison of these tasks with our proposed task presented in Table 1.1.

1) Foreign Accent Conversion (FAC) Accent conversion is a speech-to-speech task

that takes source speech from a target speaker as input, and converts the L2 accent

in the source speech to a target L1 accent. Reference-free FAC proposed by Liu et al.

(2020); Zhao et al. (2021) removes the need for an additional reference speech with the

target L1 accent and the same content as source speech. Zero-shot FAC proposed by

Quamer et al. (2022); Ding et al. (2022); Jia et al. (2023) enables FAC for unseen L2

speakers in the source speech. Despite these recent studies, reference-free zero-shot

FAC is still limited by the inability to generate any given text and generalise to unseen

accents or accent pairs.

2) Multi-Accent/Accented TTS Accented TTS takes target text, accent ID, and speaker

ID as input, aiming to generate accented speech with high naturalness and accent fi-

delity. To leverage expert linguistic knowledge, some prior work on accented TTS

focus on building a multi-accent front-end, such as Black et al. (1998), Fitt (2000),

Sun and Richmond (2024), or leveraging the built multi-accent front-end to assist ac-

cented TTS training, such as Zhou et al. (2024a), Ma et al. (2024). These approaches

are not generalisable to most languages where a high-quality multi-accent front-end

is hard-to-obtain due to its labor intensive nature. To model the acoustic details of

accent, different accent modelling techniques have been proposed, including Varia-

tional Auto-Encoder (VAE) (Melechovsky et al., 2023), Diffusion (Deja et al., 2023),

phoneme- and utterance-level representation learning (Zhou et al., 2024b; Liu et al.,

2023, 2024). To disentangle speaker and accent information which are intrinsically
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intertwined in training data, multiple strategies have been used, including adversarial

training of classifying speakers (Badlani et al., 2023b; Zhou et al., 2024b), data aug-

mentation (Badlani et al., 2023a,b), and bottleneck (Ma et al., 2024). Despite these

studies, accented TTS remains limited by its inability to generate speech for unseen

speakers and unseen accents.

3) Zero-shot TTS (ZS-TTS) ZS-TTS generates speech using the voice in a speech

prompt (i.e. reference speech) and target text as input. Jia et al. (2018) propose to

condition the TTS on speaker embeddings obtained by a pretrained speaker verifica-

tion model. Casanova et al. (2022) achieve great success in ZS-TTS, using the same

idea with the combination of generative modelling. In more recent works, some treat

TTS as a conditional Language Modelling (LM) task with the entire reference speech

as context to generate target speech, leveraging audio codecs (Défossez et al., 2023;

Zeghidour et al., 2022) and speech Large Language Modelling (LLM) (Wang et al.,

2023a; Kharitonov et al., 2023; Le et al., 2023; Chen et al., 2024); others continue

to treat TTS as a simple-to-complex distribution task, similarly using audio codecs,

but relying on Diffusion instead to model the target speech conditioned on reference

speech codec representation (Shen et al., 2024; Ju et al., 2024). Despite different zero-

shot generation approaches, none of these studies adequately addresses accent gen-

eration, with some acknowledging poor ZS-TTS performance for accented speakers

(Wang et al., 2023a).

1.3 Task Definition: Zero-shot Accent Generation

Task
Accent Generation Abilities

Any given text? Any given speaker? Any given accent?

Foreign Accent
Conversion (FAC) No. Yes. Only seen/trained

accent pairs.

Multi-Accent/
Accented TTS Yes. Only seen

speakers.
Only seen
accents.

Zero-Shot TTS Yes. Yes. No.

Zero-Shot
Accent Generation Yes. Yes. Yes.

Table 1.1: Different tasks proposed for generating accented speech.



Chapter 1. Introduction 4

We propose a new task: zero-shot accent generation. Compared with FAC, our task

aims at text-to-speech generation rather than speech-to-speech mapping, which cannot

generate speech from any given text or for unseen accents. Compared with accented

TTS, we aim at extending the model’s ability to generate speech for unseen speak-

ers/accents. Compared with ZS-TTS, we aim at controllable accent generation with

high fidelity. Our task, zero-shot accent generation refers to generating any speech

content in any given voice and accent from one audio clip, unifying the capabilities of

all three tasks mentioned above.

1.4 Research Gap: Speaker-Accent Entanglement

in AID and ZS-TTS

Speaker-accent entanglement is a pervasive problem in various speech technologies,

including Automatic Speech Recognition (ASR) (Wang et al., 2023b), Accent Identi-

fication (AID) (Shi et al., 2021; Li et al., 2023), and TTS (Ding et al., 2022; Quamer

et al., 2022; Badlani et al., 2023b,a; Zhou et al., 2024b; Ma et al., 2024). In an ideal,

though unrealistic, situation, a speech dataset should include utterances from the same

speaker in different accents. However, most speakers cannot consistently produce a

wide range of accents. Such speaker-accent entanglement leads to limitations in both

AID and ZS-TTS models, which jointly form the foundation of our proposed system.

In AID, the AESRC2020 benchmark (Shi et al., 2021) has been a standard, offering

data specifically collected for accented ASR. However, this data is limited by: 1) its

lack of representativeness for speech data in most languages, as it is perfectly balanced

(20 hours per accent, 8 accents in total), 2) the fact that it is no longer openly avail-

able, and 3) unclear speaker composition. A more recent benchmark, CommonAccent

(Zuluaga-Gomez et al., 2023), uses a subset of Common Voice (Ardila et al., 2020),

which is more representative of general-purpose speech data. However, it also lacks

clarity regarding speaker composition in its training/validation/testing sets. Our ex-

amination of the processing scripts reveals an overlap of speakers across these sets.

The extent to which speaker-accent entanglement impacts AID performance remains

largely unexplored, particularly when no effort is made to separate unseen speakers for

testing.

In ZS-TTS, the closest to our work are Zhang et al. (2023a,b) and Lyth and King

(2024). Zhang et al. (2023a,b) adapt a pretrained Tacotron 2-based (Shen et al., 2018)
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ZS-TTS, with accent ID as input and AID as auxiliary training objective, to perform

zero-shot generation for seen accents. However, their work is limited by: 1) the in-

ability to generate unseen accents, 2) the use of limited TTS data for learning accent

embeddings, 3) the reliance on pre-collected accent labels in TTS data, and 4) a lack

of disentanglement between accent and speaker. Lyth and King (2024) train an AID to

pseudo-label the data and then use pseudo-generated text descriptions of the speech to

control different attributes (incl. accent) in text-guided ZS-TTS. However, their work

is: 1) close-sourced, with no accent generation in its open-source reproduction, Parler-

TTS1, 2) unclear about how the AID is trained, susceptible to speaker-accent entangle-

ment, 3) disregarding the continuous nature of accents with pseudo-labelled discrete

accent labels as TTS input condition, and 4) unable to disentangle and separately con-

trol speaker and accent in speech generation.

To overcome the above limitations, we first propose to obtain pretrained accent em-

beddings from an improved AID model with speaker-accent disentanglement, termed

generalisable accent identification across speakers (GenAID). This approach offers

several benefits: 1) leveraging more non-TTS data to cover more speakers and accents,

2) constructing a robust accent space for even unseen accents, 3) treating accents as

continuous with varying embeddings across different utterances and speakers of the

same accent label, and 4) achieving greater generalisability across speakers, as the

name GenAID suggests.

We then propose to condition a pretrained YourTTS-based (Casanova et al., 2022)

ZS-TTS on these pretrained accent embeddings, named AccentBox. AccentBox is

capable of high-fidelity zero-shot accent generation and offers several advantages: 1)

leveraging continuous, speaker-agnostic GenAID embeddings, 2) capable of generat-

ing unseen accents, 3) no reliance on pre-collected accent labels in TTS data, and 4)

providing separate control over speaker and accent in speech generation.

1.5 Contributions: GenAID & AccentBox

To summarise, our contributions in GenAID and AccentBox are three-fold:

• Problem Identification To the best of our knowledge, we are the first to 1) verify

and quantify the speaker-accent entanglement issue in AID data/model, and 2)

highlight the accent mismatch/hallucination issue in ZS-TTS.

1https://github.com/huggingface/parler-tts
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• Novel Insights We introduce novel speaker-accent disentanglement with infor-

mation bottleneck and adversarial training in AID. We propose the task zero-

shot accent generation and set the first benchmark for such task, unifing FAC,

accented TTS, and ZS-TTS.

• SOTA Performances We achieve SOTA results in both AID (0.56 f1 score on

unseen speakers in 13-accent classification by GenAID) and zero-shot accent

generation (57.4%-70.0% accent similarity preference across inherent/cross ac-

cent generation against strong baselines by AccentBox).

1.6 Roadmap

This thesis is organised as follows. Chapters 2 and 3 detail the proposed GenAID and

AccentBox respectively. Discussion, conclusions, and future work are presented in

Chapters 4 and 5.



Chapter 2

GenAID: Generalisable Accent

Identification across Speakers

2.1 Overview

In this chapter, we introduce the first stage of our work, Generalisable Accent Iden-

tification across Speakers (GenAID). Section 2.2 lists out the problems with current

speech datasets on accents, the steps we take to curate a dataset for English AID,

and the justification for each step. Section 2.3 illustrates the reproduction of the SOTA

baselines by Zuluaga-Gomez et al. (2023) and identifies two key limitations these base-

lines possess: intrinsic speaker-accent entanglement and bias towards more common

accents. Motivated by the identified problems and research question, we propose sev-

eral modifications, with specific methods, experimental design, and results in Section

2.4, 2.5, and 2.6 respectively. Final conclusions and future work are presented in Sec-

tion 2.7.

2.2 Data

2.2.1 Existing Datasets

Ideally, AID datasets should encompass a broad and balanced range of accents, with

sufficient speakers and utterances for each accent. Table 2.1 lists, to the best of

our knowledge, the largest datasets available for multi-accent identification research.

AESRC2020 is no longer freely available. EDACC, L2-ARCTIC, and VCTK have

limited speakers for most accents, making it challenging to train models that gener-

7
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Corpus Type L1/L2
Accent
Labels

#Accents
#Speakers
per Accent

CommonAccent
(Zuluaga-Gomez et al., 2023)

read speech,
for ASR

both
self-reported
by speaker

16 30+∼6000+

EDACC
(Sanabria et al., 2023)

conversation,
for ASR

both
exhaustive

questionnaire
40+ 1∼10

AESRC2020*
(Shi et al., 2021)

read speech,
for ASR

both
country
of origin

10 3000+

L2-ARCTIC
(Zhao et al., 2018)

read speech,
for TTS

L2
assigned
by expert

6 4

VCTK
(Yamagishi et al., 2012)

read speech,
for TTS

L1
assigned
by expert

11 1∼33

Table 2.1: Information of multi-accent English speech corpora with accent labels.

*: Note that AESRC2020 corpus is no longer openly available.

alise well to unseen speakers. Additionally, EDACC consists of conversational speech

which mismatches the read speech generation task in later stage. The only viable op-

tion, CommonAccent, is derived from Common Voice (Ardila et al., 2020) using the

portion with self-reported accent labels. Despite its broad coverage of accents and

speakers/utterances for each accent, CommonAccent disregards speaker information

when splitting training/validation/testing sets, resulting in overlap of speakers between

training and validation/testing sets. Testing the models on speakers partially seen dur-

ing training is flawed, so we reprocess CommonAccent to suit our needs.

2.2.2 Data Selection & Processing

We make the following modifications to the original CommonAccent processing pipeline

to derive a multi-accent speech dataset.

1) Larger-Scale Data from Latest Common Voice To obtain larger-scale and higher-

quality data, we use the latest English portion of Common Voice version 17.01, instead

of 7.0 by Zuluaga-Gomez et al. (2023).

2) Dividing Validation/Testing Sets by Seen and Unseen Speakers To evaluate the

performances of AID models on both seen and unseen speakers, we create separate

validation/testing sets for seen and unseen speakers. The unseen speakers sets do not

1https://commonvoice.mozilla.org/en/datasets
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overlap with the training set in terms of speakers.

3) Filter out Accents with Insufficient Number of Speakers To train an AID model

that generalises well to unseen speakers, we exclude accent labels with insufficient

speakers. Remaining accents shall have: 1) at least 10 speakers with 50 utterances

each (for training data and validation/testing on seen speakers), and 2) 20 additional

speakers with at least 10 utterances each (for validation/testing on unseen speakers).

4) Balancing the Number of Utterances Across Speakers To prevent biasing the AID

model towards certain speakers, we allow a maximum of 30 utterances per speaker in

Accent
Training

Validation Testing

Seen
Spks

Unseen
Spks

Seen
Spks

Unseen
Spks

#Spks
#Uttr
(total)

#Spks
×#Uttr

#Spks
×#Uttr

#Spks
×#Uttr

#Spks
×#Uttr

American 6,129 78,199 948×10 10×10 948×10 10×10

English 1,737 22,481 274×10 10×10 274×10 10×10

Canadian 695 10,266 165×10 10×10 165×10 10×10

Australian 472 6,952 91×10 10×10 91×10 10×10

Irish 127 1,412 21×10 10×10 21×10 10×10

Scottish 108 1,377 23×10 10×10 23×10 10×10

New Zealand 101 1,116 17×10 10×10 17×10 10×10

South Asian 1,658 16,595 178×10 10×10 178×10 10×10

Southern African 199 2,328 36×10 10×10 36×10 10×10

Hong Kong 84 735 13×10 10×10 13×10 10×10

Filipino 77 1,103 24×10 10×10 24×10 10×10

Malaysian* 57 416 3×10 10×10 3×10 10×10

Singaporean* 43 381 8×10 9×10 8×10 10×10

TOTAL 11,487 143,361 18,010 1,290 18,010 1,300

Table 2.2: Data composition of final processed training/validation/testing sets, incl. 7

L1 accents (top) and 6 L2 accents (bottom). “Spks” - speakers; “Uttr” - utterances.

*: These two accents do not strictly meet the requirements,

but are included for sufficient accent classes.
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Accent Training
Validation Testing

Seen

Spks

Unseen

Spks

Seen

Spks

Unseen

Spks

American 122.4 14.36 0.16 14.44 0.16

English 35.4 4.18 0.17 4.21 0.17

Canadian 15.8 2.47 0.16 2.50 0.15

Australian 10.8 1.36 0.16 1.33 0.16

Irish 2.3 0.34 0.15 0.34 0.15

Scottish 2.2 0.36 0.18 0.36 0.17

New Zealand 1.8 0.27 0.16 0.28 0.15

South Asian 27.2 2.81 0.16 2.83 0.17

Southern African 3.8 0.58 0.16 0.58 0.17

Hong Kong 1.2 0.19 0.17 0.19 0.16

Filipino 1.7 0.36 0.16 0.37 0.17

Malaysian 0.7 0.05 0.16 0.05 0.16

Singaporean 0.6 0.13 0.15 0.11 0.16

TOTAL 225.9 27.46 2.10 27.59 2.10

Table 2.3: Duration information of final processed training/validation/testing sets.

All duration info is calculated in hour(s).

the training set. All speakers excluded from the unseen speakers validation/testing sets

are included in training to improve speaker coverage of the training data.

The composition of the final processed data is shown in Table 2.2, with its duration

information in Table 2.3. Accent labels are cleaned from the self-reported labels by

speakers (see Appendix A for details). Most of these accent labels do not contain

granular accent variety information (e.g. Received Pronunciation, Leeds accent) and

are just coarse region/country-level accent information (e.g. Singaporean, Malaysian).

2.2.3 Limitations

1) English Accents Only Most existing datasets focus on English, limiting our study.

We will test our approach on other languages, if sufficient data becomes available.

2) Inherent Problems of Accent Labels Labelling speech with discrete accent la-

bels is an ill-formed task considering the continuous nature of accents (Lyth and King,
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2024). Common Voice let speakers self-report their accents, and AESRC2020 uses

each speaker’s country of origin – both methods lack precision in defining accents

(Sanabria et al., 2023). We recognise the inherent problems of these accent labels, how-

ever, to ignore accents in speech technology research would be unacceptable. There-

fore, we leave such accent definition and labelling problem for future work.

3) Limited Coverage of Accents As shown in Tables 2.2 and 2.3, the final dataset

still covers a limited number of accents. This limitation stems from the lack of accent

diversity in the English portion of Common Voice. Although other L2 learner speech

corpora (listed in Table 2.4) exist, each focuses on a single accent and requires unique

processing to be integrated into a multi-accent dataset. As such, expanding data size

and coverage by other datasets listed in Tables 2.1 and 2.4 is reserved for future work.

Corpus Accent

BELC2

(Muñoz, 2006)
Barcelona

CUHK Corpus3

(MacWhinney, 2017)
Chinese

Corpus PAROLE4

(Hilton, 2009)
French

Dresden Corpus5

(Kubanek-German, 2000)
German

Connolly Corpus6

(Green and Green, 1993; Worthington, 1997)
Japanese

Table 2.4: Information of single-accent L2 English speech corpora.

4) Imbalanced Coverage of Accents As shown in Tables 2.2 and 2.3, the most scarce

accent has only 43 speakers / 0.6 hours in the training set while the most common

accent has 6,129 speakers / 122.4 hours. Unfortunately, this imbalance is unavoid-

able during data collection due to the varying number of speakers for each accent.

Downsampling data of the more common accents may unnecessarily harm overall per-

formance. Thus, we leave such label imbalance for modelling techniques to mitigate,

to be introduced in Section 2.4.
2https://slabank.talkbank.org/access/English/BELC.html
3https://slabank.talkbank.org/access/English/CUHK.html
4https://slabank.talkbank.org/access/English/PAROLE.html
5https://slabank.talkbank.org/access/English/Dresden.html
6https://slabank.talkbank.org/access/English/Connolly.html
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2.3 Problem Identification

2.3.1 Hypothesised Problems

The previous section on curating the English AID dataset highlights two key problems

that AID models may suffer:

1) Intrinsic Speaker-Accent Entanglement Despite our efforts above to include more

speakers for each accent, still each speaker has one corresponding accent, leading to

intrinsic entanglement between speaker and accent. Failure to address such entangle-

ment could cause the AID models to generalise poorly across speakers.

2) Bias Towards More Common Accents The imbalanced coverage of accents, with-

out proper handling, may bias the AID models towards predicting more common ac-

cents to quickly achieve lower loss and higher accuracy.

2.3.2 Reproduction of Baselines

Motivated by aforementioned data issues and hypothesised problems, we reproduce the

baselines by Zuluaga-Gomez et al. (2023) and test them on our newly curated dataset

to verify these problems. Zuluaga-Gomez et al. (2023) finetune both ECAPA-TDNN

(Desplanques et al., 2020) and XLSR (Babu et al., 2022) with an accent classification

layer on top, setting the most recent benchmark on AID. Despite our best efforts to

faithfully reproduce their work, there are two differences:

1) Mismatch in Dataset We could not train/validate/test on the same dataset as the

authors because: 1) the overlap of speakers in their training and validation/testing sets

which hides the problem we seek identification and verification; 2) the provided pro-

cessing script cannot exactly reproduce the data used in training/validating/testing the

reported AID models.

2) Mismatch between Code and Paper We use the open-source code7 by the author

and adhere to its implementation, which slightly differs from the paper. Specifically,

the ECAPA-TDNN-based model is initialised from a Speaker Verification model8 rather

than a Language Identification model9; and the XLSR-based model uses average pool-

ing rather than statistical pooling when pooling frame-level embeddings to an utterance-

7https://github.com/JuanPZuluaga/accent-recog-slt2022/tree/main
8https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
9https://huggingface.co/speechbrain/lang-id-commonlanguage_ecapa
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level embedding for classification. These deviations do not significantly affect the per-

formance of models in our reproduction.

2.3.3 Results & Analysis of Baselines

Baseline

Reproduced Results
Reported by

CommonAccent

Seen Spks Unseen Spks Mixed

f1 acc f1 acc acc

ECAPA-TDNN-based
(#E1 baseline vs reported)

0.76 0.85 0.26 0.29 0.79*

XLSR-based
(#X1 baseline vs reported)

0.95 0.96 0.40 0.43 0.95*

Table 2.5: Reproduced and reported results of AID baselines.

*: These numbers are taken directly from Zuluaga-Gomez et al. (2023).

“Spks” - speakers; “acc” - accuracy; “f1” - macro-average f1 score across accents.

We successfully reproduce the benchmark classification performance with 0.76/0.95

macro-f1 scores on seen speakers (see Table 2.5), which resembles the mixed test-

ing set (mostly seen speakers) used by the authors. However, when tested on unseen

speakers, performance drastically drops to 0.26/0.40 macro-f1 scores. This indicates

that these models have poor generalisation across speakers and are memorising the

speaker-to-accent mapping rather than learning to discriminate accents from speech.

The huge gap in performances between seen and unseen speakers verifies the first hy-

pothesised problem that these AID models do not generalise well across speakers.

We further analyse the predictions and find they are heavily biased towards more

common accents, verifing the second hypothesised problem. Figure 2.1 show the con-

fusion matrices of the reproduced systems on the unseen speakers testing set. Both

systems exhibit severe biases, predicting a vast majority of utterances as having an

American accent.

Finally, we visualise the embeddings learned by XLSR-based baseline using t-SNE

(van der Maaten and Hinton, 2008), as shown in Figure 2.2. On the seen speakers test-

ing set, we randomly select 10 speakers if the accent contains more speakers, to balance

between accents of various data size and avoid biasing the t-SNE model. We success-
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(a) ECAPA-TDNN-based baseline, #E1 baseline.
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(b) XLSR-based baseline, #X1 baseline.

Figure 2.1: Confusion matrices of two reproduced baselines,

showing biased predictions - most predicted labels are “American”.
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(b) XLSR-based, #X1 baseline, on unseen speakers.

Figure 2.2: T-SNE visualisation of embeddings by XLSR-based baseline

#X1 baseline on seen and unseen speakers,

showing entanglement of speakers and accents.
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fully reproduce the clearly separable accent clusters on seen speakers (no fault in our

reproduction); however, the visualisation on unseen speakers reveals the baseline’s ac-

tual accent discrimination ability in real scenarios and exhibits strong speaker-accent

entanglement (with each tiny cluster comprising utterances from the same speaker).

2.3.4 Research Question

The problems identified and verified in the previous sections highlight the need for a

better AID model. Current benchmark approaches are flawed, and directly applying the

learned representations from these AID models to the later stage, i.e. zero-shot accent

generation, would lead to disastrous error propagation - the ZS-TTS models would take

a problematic accent embedding extracted from one audio clip by an unseen speakers

as input.

In this first stage, the formal research question we ask is: How can we extract ac-

cent embeddings that are more discriminative of accents and less influenced by other

speech factors (e.g. speaker, channel, content, etc.)? Addressing the problem of bi-

ased prediction could improve the discriminative ability of accents, while tackling the

poor generalization across speakers could enhance both accent discrimination and the

removal of other speech factors in the learned embeddings.

2.4 Methods

2.4.1 Overview

In this section, five improvement techniques are proposed for a more generalisable AID

across speakers. Sections 2.4.2 and 2.4.3 present two training modifications. Section

2.4.4 details the data augmentation. Sections 2.4.5 and 2.4.6 introduce the information

bottleneck and adversarial training added to the model architectures, for better speaker-

accent disentanglement. The final proposed systems are shown in Figure 2.3. We

experiment all five techniques accumulatively with both ECAPA-TDNN-based and

XLSR-based baselines (#E1 and #X1), reproduced in Section 2.3.2.

2.4.2 Validation on Unseen Speakers

Selecting the best checkpoint based on a validation set containing seen speakers can

lead to overfitting. As training progresses, the model may show increasing accuracy
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Figure 2.3: Model architectures of proposed AID systems (GenAID).

“Adv.” - Adversarial; “dim” - dimension; “emb” - embedding.

on the validation set by memorising the speaker-to-accent mapping without learning

to discriminate accents. Therefore, we validate the models on unseen speakers. The

resulted early stopping during training prevents the model from overfitting on seen

speakers and sacrificing the generalisation ability across speakers.

2.4.3 Weighted Sampling

Both data composition (see Tables 2.2 and 2.3) and baseline model predictions (see

Figure 2.1) demonstrate the severe class imbalance problem facing AID models. One
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common solution is to use a weighted Cross Entropy loss where less common labels

receives higher weights when calculating the loss (Ho and Wookey, 2020). However,

some accent labels are so scarce that they appear in less than 0.3% of the batches.

Updating model parameters at such few steps are ineffective, even with a higher loss

incurred. Therefore, we apply weighted sampling instead, to ensure equal probabil-

ity of sampling each accent’s data in each batch (Ling and Li, 1998). The sampling

weights are the inverse frequency of each accent in the data. We hypothesise that

weighted sampling would effectively mitigate biased prediction.

2.4.4 Data Augmentation by Perturbation

The large multi-accent dataset obtained in Section 2.2 is still limited in covering vari-

ous speech factors (e.g. recording device, recording environment, speaking rate, etc.).

This limitation hinders the performance of AID models and confounds learned accent

embeddings with other speech factors. We augment the data by conducting both speed

(Ko et al., 2015) and noise perturbation (Ko et al., 2017) to improve the generalisation

of AID models across various scenarios. For each utterance, we generate a perturbed

version by: 1) randomly changing the speech rate to one of {×0.95,×1,×1.05}, and

2) adding noise and reverberation with a random Signal-to-Noise Ratio (SNR) of 0-15,

using the OpenRIR10 dataset.

2.4.5 Information Bottleneck

Despite the training modifications and data augmentation above, the learned embed-

dings still contain unnecessary information that interferes with the AID task, especially

for the XLSR-based AID model where much information is learned during XLSR pre-

training. Let the input speech signal be x and the ECAPA-TDNN or XLSR Encoder

shown in Figure 2.3 be Encoder(·), the learned embedding h is obtained by:

h = Encoder(x). (2.1)

h is then passed to a classifier that outputs the normalised probability over all accent

labels p(yacc):

p(yacc) = σ(Linear(h)), (2.2)

where σ is the softmax activation. Inspired by Qian et al. (2019, 2020), we construct an

information bottleneck, denoted Bottleneck(·), that projects the encoder output h into
10http://www.openslr.org/28



Chapter 2. GenAID: Generalisable Accent Identification across Speakers 19

a low-dimensional space h′ which contains less information and may better disentangle

various speech factors, expressed as:

h′ = Bottleneck(h), (2.3)

p(yacc) = σ(Linear(h′)), (2.4)

where |h′|< |h|, i.e. the size of embedding h′ is smaller than that of embedding h. The

Bottleneck(·) we adopt is a two-layer Multi-Layer Perceptron (MLP) with GELU

activation (Hendrycks and Gimpel, 2016).

2.4.6 Adversarial Training

Gradient Reversal Layer (GRL), introduced by Ganin et al. (2016) for domain adap-

tation, is widely used for information disentanglement and removal. GRL works by

passing the target embedding (e.g. accent embedding) to an auxiliary classifier which

learns to discriminate the information to be removed (e.g. speaker identity). Then,

during backpropogation, the gradients are reversed (i.e. gradient ascent rather than de-

scent), encouraging the the target embedding to be invariant to the information being

removed (e.g. speaker-agnostic). The total loss L is expressed as:

L = Lacc clf −α ·Lspk clf (2.5)

where Lacc clf denotes the loss for accent classification, Lspk clf denotes the loss for

speaker classification, and α denotes a positive hyperparameter to balance the scale of

losses. However, GRL can be challenging when applied to disentangling speaker and

accent in AID, due to unstable training and problematic training objective.

• The model is encouraged to minimise the probability of the true speaker label

y∗spk given the input signal x, expressed as:

argmin
θ

P(yspk = y∗spk|x;θ), (2.6)

where θ denotes the learnable parameters of the model. For any initial pa-

rameters θ0 not trained on the speaker verification/identification task, P(yspk =

y∗spk|x;θ0) is typically extremely low, especially with numerous speaker labels

|yspk|> 10,000. This low probability incurs a large negative Lspk clf, even at the

initial stage of training, causing unstable training.
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• Moreover, as training progresses, minimising Lspk clf and P(yspk = y∗spk|x;θ) is

not meaningful for three reasons. 1) Reducing the target speaker probability

P(yspk = y∗spk|x;θ) from 10−2 to 10−10 for instance, does not necessarily improve

speaker disentanglement. 2) A model that consistently predicts all speaker labels

incorrectly still indicates some learning of speaker information (an analogy is

that you definitely know something about the correct answers to score 0% in

a multiple-choice exam). 3) Even with extremely low P(yspk = y∗spk|x;θ), the

model might still predict a high P(yspk = y′spk|x;θ) where y′spk is a speaker similar

to the true speaker y∗spk. All of these reasons combined, point to the problematic

training objective in GRL.

To address these limitations, we propose training the model to be maximally uncer-

tain about speaker information, inspired by Webber et al. (2020) in their work of voice

anonymisation. This is achieved using a Mean Square Error (MSE) loss LMSE between

the predicted distribution of speaker labels p(yspk|x;θ) and an even distribution across

all speakers U(|yspk|). This prevents unstable training by ensuring the adversarial loss

is not excessively negative, and it corrects problematic training objective by aiming for

uniform uncertainty about speakers. The total loss function is now expressed as:

L = Lacc clf +α ·LMSE[p(yspk|x;θ),U(|yspk|)]. (2.7)

2.5 Experiments

2.5.1 Systems

To address our research question and evaluate the proposed methods in Section 2.4,

we sequentially apply these five modifications on both baselines. Modifications are

retained for subsequent experiments if they result in improvement. The baselines, re-

produced in Section 2.3.2, are denoted as #E1 baseline and #X1 baseline. For

ECAPA-TDNN-based systems, four of the five modifications, excluding the informa-

tion bottleneck, show improvement in performance and are accumulatively added as

#E2 to #E5 systems. For XLSR systems, all five modifications show improvement in

performance and are accumulatively added as #X2 to #X6 systems (see Table 2.7).
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2.5.2 Configurations

1) Pretraining Following Zuluaga-Gomez et al. (2023), we initialise ECAPA-TDNN-

based models from a Speaker Verification model11, and XLSR-based models from

XLSR-large12. All model parameters are unfrozen in AID finetuning, except for the

bottom CNN layers in XLSR Encoder, shown in Figure 2.3.

2) Audio Processing To be consistent with pretrained models, all waveforms are down-

sampled to 16 kHz as input.

3) Classification Loss To be consistent with pretrained models, we use Additive An-

gular Margin (AAM) loss (Xiang et al., 2019) for ECAPA-TDNN-based models and

Cross Entropy loss for XLSR-based models in accent classification, i.e. Lacc clf in

Equation 2.7.

4) Hyperparameters Tuning We use the maximum batch size available on a single

GPU, 24 for ECAPA-TDNN-based and 12 for XLSR-based models. For all models,

we finetune the hyperparameters shown in Table 2.6, and choose the best checkpoint

based on the highest classification accuracy on unseen speakers validation set. The

best ECAPA-TDNN-based system (#E5) is trained with a learning rate of 5e-5, no

bottleneck, and α of 1e-2. The best XLSR-based system (#X6) is trained with a learning

rate of 1e-4, bottleneck of 64 dimension, and α of 10.

Hyperparameters Values

learning rate 1e-4, 5e-5, 2e-5, 1e-5

bottleneck dimension 1024, 192, 64, 32

α for adversarial training
in ECAPA-TDNN-based AID 5e-2, 1e-2, 5e-3, 1e-3

α for adversarial training
in XLSR-based AID 1, 10, 100

Table 2.6: Values of tuned hyperparamters.

5) Training Environment All models are trained on a single NVIDIA Tesla V100-

SXM2-16GB GPU, with maximum 30 epochs for ECAPA-TDNN-based and 10 epochs

for XLSR-based models.
11https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
12https://huggingface.co/facebook/wav2vec2-large-xlsr-53
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2.5.3 Evaluation

1) Classification Metrics We evaluate AID performance using precision, recall, f1

score, and accuracy. For the seen speaker testing sets, the macro-average of precision,

recall, and f1 score across all accents are reported, to avoid the influence of class

imbalance. We also report the gap of f1 scores and accuracies between seen and unseen

speakers to reflect the system’s generalisation ability (the smaller the gap, the better the

generalisation across speakers).

2) T-SNE Visualisation To visualise the speaker and accent information captured by

the AID models, we extract the latent embeddings before the final classification layer

of each model, i.e. h in Equation 2.2 or h′ in Equation 2.4 after bottleneck is applied,

for all utterances in the unseen speaker testing set. These embeddings are then passed

to t-SNE (van der Maaten and Hinton, 2008) and visualised.

3) Silhouette Coefficient for Speaker Clusters (SCSC) To quantify residual speaker

information, we group embeddings of each accent label by speaker, and calculate the

Silhouette coefficient (Rousseeuw, 1987) for these speaker clusters. For each data

point i in speaker cluster CI , the mean intra-cluster distance a is calculated as:

a =
1

|CI|−1 ∑
j∈CI , j ̸=i

dist(i, j) (2.8)

where j is another data point in the same speaker cluster CI , and dist(·) represents

the Euclidean distance between embeddings. The mean nearest-cluster distance b is

calculated as:

b = min
J ̸=I

1
|CJ| ∑

k∈CJ

dist(i,k) (2.9)

where k is a data point in a different speaker cluster CJ . The Silhouette score s of data

point i is thus:

s =
(b−a)

max(a,b)
(2.10)

The Silhouette coefficient is the mean of Silhouette scores across all data points, rang-

ing between [−1,1]. A higher Silhouette coefficient indicates well-separated less over-

lapping clusters, while a lower Silhouette Coefficient for Speaker Clusters (SCSC)

suggests that the residual speaker information in the learned embeddings is less, with

more overlapping between speaker clusters.
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2.6 Results & Analysis

2.6.1 Overall

AID Systems
Seen Speakers Unseen Speakers ↑ Gap ↓

prec rec f1 acc prec rec f1 acc f1 acc

#E1 baseline 0.85 0.72 0.76 0.85 0.46 0.29 0.26 0.29 0.50 0.56

#E2 w/ valid on unseen 0.80 0.71 0.73 0.83 0.49 0.32 0.29 0.32 0.44 0.51

#E3 w/ weighted sampler 0.72 0.91 0.80 0.81 0.46 0.43 0.41 0.43 0.39 0.38

#E4 w/ perturbation 0.53 0.88 0.61 0.62 0.48 0.50 0.47 0.50 0.14 0.12

#E5 w/ adv. training 0.56 0.88 0.63 0.58 0.49 0.50 0.47 0.50 0.16 0.08

#X1 baseline 0.97 0.94 0.95 0.96 0.56 0.43 0.40 0.43 0.55 0.53

#X2 w/ valid on unseen 0.88 0.81 0.82 0.86 0.57 0.47 0.45 0.47 0.37 0.39

#X3 w/ weighted sampler 0.75 0.87 0.77 0.58 0.56 0.47 0.46 0.47 0.31 0.11

#X4 w/ perturbation 0.78 0.90 0.81 0.63 0.60 0.50 0.48 0.50 0.33 0.13

#X5 w/ bottleneck(64dim) 0.66 0.87 0.73 0.66 0.61 0.56 0.55 0.56 0.18 0.10

#X6 w/ adv. training 0.73 0.89 0.78 0.62 0.63 0.56 0.55 0.56 0.23 0.06

Table 2.7: Accent identification results of AID systems.

top-half: ECAPA-TDNN-based; bottom-half: XLSR-based. All “w/” changes

are accumulative. “adv.” - adversarial; “prec” - precision; “rec” - recall.

Table 2.7 shows the best systems and changes from baselines. On unseen speakers

which we focus on, a significant f1 score improvement is achieved: 0.21 for ECAPA-

TDNN-based (#E1 vs #E5) and 0.15 for XLSR-based (#X1 vs #X6). The best system

(#X6) achieves a 0.56 AID accuracy on unseen speakers, significantly better than the

0.08 random baseline. We also reduced speaker entanglement, with smaller f1 gaps be-

tween seen and unseen speakers (0.50 vs 0.16 by #E1 vs #E5 and 0.55 vs 0.23 by #X1

vs #X6). Note that high accuracy on seen speakers with a large gap to unseen speak-

ers is not desirable. This suggests the model is memorizing speaker-accent mappings

rather than learning to discriminate accents.

We visualise embeddings of the best systems on unseen speakers using t-SNE (Fig-

ure 2.4). The best XLSR-based system (#X6) shows better-separated accent clusters

with and less speaker-accent entanglement compared to the XLSR baseline (#X1) in
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(b) XLSR-based, #X6 w/ adv. training, on unseen speakers.

Figure 2.4: T-SNE visualisation of embeddings by the best AID systems,

showing better-separated accent clusters by the best XLSR-based system.
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Figure 2.2b. By contrast, the best ECAPA-TDNN-based system, despite comparable

accent classification performance, lacks well-separated accent clusters.

Weighted sampling and data augmentation by perturbation are most effective for

ECAPA-TDNN-based systems, improving f1 by 0.12 and 0.06 on unseen speakers.

For XLSR-based systems, the information bottleneck leads to a 0.07 f1 increase. The

following sections analyse these effects, with supplementary evidence and further dis-

cussion on Self-Supervised Learning (SSL) models and accent similarity.

2.6.2 Reduced Overfitting by Validation on Unseen Speakers

Both ECAPA-TDNN-based and XLSR-based systems exhibit modest improvements

on unseen speakers after validating on unseen speakers (0.03 f1 increase by #E1 vs #E2

and 0.05 f1 increase by #X1 vs #X2). The reduced generalisation gap across speakers

(0.06 f1 gap decrease by #E1 vs #E2 and 0.18 f1 gap decrease by #X1 vs #X2) con-

firms that this simple and classical technique effectively alleviates overfitting on seen

speakers.

2.6.3 More Balanced Predictions by Weighted Sampling

Weighted sampling significantly improves the ECAPA-TDNN-based system, with 0.12

f1 and 0.11 recall increase on unseen speakers (#E2 vs #E3). Detailed analysis, with

confusion matrices shown in Figure 2.5, reveals that this improvement comes from

better recall rates for scarce accent labels, reducing bias towards common accents like

“American”. However, the effects on XLSR-based system is marginal, with 0.01 f1

increase on unseen speakers (#X2 vs #X3), likely due to its robustness from SSL pre-

training, which exposed the model to a wide range of accents and languages.

2.6.4 Improved Generalisation by Data Augmentation

Data augmentation works effectively on ECAPA-TDNN-based system, with 0.06 f1

increase on unseen speakers and 0.25 f1 gap decrease (#E3 vs #E4), shown in Table

2.7). The improvement is likely due to the “pseudo” new speakers created by per-

turbation. However, the effects on XLSR-based system is less effective, with 0.02 f1

increase on unseen speakers (#X3 vs #X4), likely because SSL pretraining already pro-

vides robustness to noise and speaking rate variability, making data augmentation less

impactful.
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(b) #E3 w/ weighted sampler, after weighted sampling.

Figure 2.5: Confusion matrices of ECAPA-TDNN-based systems before and after

applying weighted sampling, showing effects on debiasing predictions.
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2.6.5 Effective Disentanglement by Information Bottleneck

for XLSR-based AID

1024 192 64 32
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Figure 2.6: F1 scores of applying information bottleneck of different dimensions to

ECAPA-TDNN-based #E4 and XLSR-based #X4, showing improvement for only

XLSR-based system with 0.07 increase in f1 score at 64 dimension (#X5).

Information bottleneck does not work on ECAPA-TDNN-based system, with deteri-

orating f1 scores (see Figure 2.6) as the dimension of the bottleneck decreases. The

ineffectiveness on ECAPA-TDNN-based system suggests that there is not much non-

accent-related information that could be filtered out without harming AID perfor-

mance. However, information bottleneck works very effectively on XLSR-based sys-

tem, with 0.07 f1 increase at 64 dimension (see the blue line in Figure 2.6). The effects

of information gap on speaker disentanglement is also shown in the reduced general-

isation gap across speakers (0.15 f1 gap decrease by #X4 vs #X5 in Table 2.7). The

effectiveness on XLSR-based system suggests that the bottleneck helps filter out non-

accent-related information from the richer, more redundant embeddings produced by

SSL pretraining.

Visualisation of all embeddings using t-SNE, shown in Figure 2.7, shows better-

separated accent clusters after applying the information bottleneck. Additionally, the

mean Silhouette Coefficient for Speaker Clusters (SCSC) of embeddings across all

accents drops from 0.176 to 0.090 (p-value = 6.09× 10−6), shown in #X4 vs #X5 in

Table 2.8, demonstrating statistically significant more overlap between speaker clusters
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(b) #X5 w/ bottleneck(64dim), after bottleneck.

Figure 2.7: T-SNE visualisation of embeddings by XLSR-based systems

on seen speakers, before and after applying information bottleneck,

showing effects on separability of accent clusters.
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Systems
USA ENG CAN AUS IRL SCO NZL

SAS SAF HKG PHL MYS SGP mean↓

#E4
0.149 0.171 0.154 0.185 0.130 0.155 0.147

0.124 0.152 0.127 0.135 0.124 0.170 0.146

#E5
0.118 0.124 0.122 0.153 0.094 0.112 0.139

0.098 0.116 0.085 0.104 0.106 0.144 0.114

#X4
0.170 0.160 0.175 0.148 0.125 0.152 0.097

0.178 0.182 0.245 0.205 0.226 0.221 0.176

#X5
0.018 0.083 0.030 0.066 0.012 0.029 0.080

0.101 0.158 0.164 0.115 0.146 0.167 0.090

#X6
0.095 0.059 0.054 0.052 -0.009 -0.018 0.064

0.078 0.136 0.160 0.072 0.135 0.143 0.079

Table 2.8: Silhouette Coefficients for Speaker Clusters (SCSC)

for each accent by different AID systems.

Effects of information bottleneck see #X4 vs #X5;

effects of adversarial training see #E4 vs #E5 and #E5 vs #E6.

USA - American, ENG - English, CAN - Canadian, AUS - Australian, IRL - Irish,

SCO - Scottish, NZL - New Zealand, SAS - South Asian, SAF - South African,

HKG - Hong Kong, PHL - Filipino, MYS - Malaysian, SGP - Singaporean.

in the learned accent space. Both pieces of evidence proves that there are more accent-

related and less speaker-related information in the learned accent space.

2.6.6 Better Speaker Disentanglement by Adversarial Training

Adversarial training has minimal impact on accent classification results (<0.01 F1

change on unseen speakers for both #E4 vs #E5 and #X5 vs #X6). However, the SCSC

results, which quantifies the residual amount of speaker information, suggest a small

positive effect on speaker disentanglement, shown in Table 2.8. For ECAPA-TDNN-

based systems, SCSC decreased from 0.146 to 0.114 (p-value = 1.53× 10−7), while

for XLSR-based systems, SCSC decreased from 0.090 to 0.079 (p-value = 0.22). The

limited effect with weak statistical significance on the XLSR-based system may be

due to most speaker-related information already being filtered by the information bot-

tleneck. The final 0.079 SCSC suggests heavy overlap between speaker clusters in the
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learned accent space.

The limited effect could also be caused by the adversarial training scheme, which

guides an auxiliary classifier to output an even distribution over all speakers p(yspk|x;θ)

→ U(|yspk|). Without a clear supervised signal, the model learns an even distribution

over 10,000 undefined labels (which may not correspond to speakers). Such adversar-

ial training is still helpful since the model is guided not to disambiguate information at

such high granularity, but certainly suboptimal. We retain this adversarial training in

our best systems, and leave more advanced schemes/designs for future work.

2.6.7 Implications for Self-Supervised Learning (SSL) Models

Overall, XLSR-based systems outperform ECAPA-TDNN-based systems, as shown in

Table 2.7. Additionally, XLSR-based systems, aided by speech SSL pretraining, are

more robust to class imbalance (analysed in Section 2.4.3) and noise/speech variability

(analysed in Section 2.4.4). XLSR-based systems also possess richer information and

would benefit from an information bottleneck (analysed in Section 2.4.5). This points

to future research into what information these models hold and how robust they are

across various speech factors like accents, speakers, channels, environments, styles,

and rates.

2.6.8 Implications for Accent Similarity

T-SNE visualisation of the best system (Figure 2.4b) reveals that while most accent

clusters are well-separated, some accent pairs overlap, reflecting regional proximity

and accent similarity. Overlapping accents pairs include: American & Canadian, Aus-

tralian & New Zealand, Singaporean & Malaysian (possibly also Hong Kong). These

findings highlight the issues with self-reported, discrete accent labels, suggesting some

accents may need further separation (e.g. different American accents - General Ameri-

can, New York, and South Carolina as in UNISYN lexicon13 (Fitt, 2000)) while others

can be combined (e.g. arguably, Australian & New Zealand). AID models can be used

to objectively measure accent similarity in speech signals by assessing cluster separa-

tion in the learned accent space, which can guide linguistic research on accents.

13https://www.cstr.ed.ac.uk/projects/unisyn/
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2.7 Conclusions & Future Work

This chapter systematically addresses the challenges in AID, including dataset issues,

benchmark shortcomings, and the effects of proposed modifications. Our key contri-

butions are:

• To the best of our knowledge, we are the first to verify and quantify two critical

issues in AID: 1) intrinsic speaker-accent entanglement, and 2) bias towards

more common accents.

• We propose GenAID, with five effective modifications, reaching a new SOTA of

0.56 f1 score in 13-accent classification on unseen speakers.

• We propose new speaker-accent disentanglement methods, using information

bottleneck and MSE-based adversarial training, and quantify the effects using

proposed SCSC metric. We also raise concerns about the effectiveness of current

adversarial training.

To revisit our research question: How can we extract accent embeddings that are more

discriminative of accents and less influenced by other speech factors? Our results and

analysis have addressed this question. GenAID achieves SOTA performance, gener-

alises well across speakers, and provides better accent embeddings (which is crucial for

the second stage accent generation task). In the future, we wish to focus on following

four areas:

• 1) Data Size and Accent Coverage We aim at constructing a larger dataset with

broader accent coverage, incorporating other multi-accent and L2 learner speech

corpora.

• 2) Quantifying other Residual/Entangled Information Beyond speaker-accent

entanglement, we would like to investigate and examine other biases and entan-

glement in speech, such as gender biases, and content-accent entanglement.

• 3) Explainable Accent Space The current accent space is well-separated across

most accents, but not explainable. We wish to explore how accent intensity and

mixed accents are encoded in the learned accent space.

• 4) More Effective Adversarial Training We call for research into more ef-

fective adversarial training scheme which can better remove information from
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learned embeddings. We will also incorporate the disentanglement of other

speech factors such as content, gender, age, etc. for AID and potentially speech

forensics.



Chapter 3

AccentBox: High-Fidelity Zero-Shot

Accent Generation

3.1 Overview

This chapter introduces AccentBox, a framework for high-fidelity zero-shot accent

generation, enabling speech content creation in any voice and accent from a single au-

dio clip. Section 3.2 lists out the data used for pretraining, finetuning, and inference in

various systems. Section 3.3 examines a SOTA ZS-TTS system, identifies the accent

mismatch/hallucination problem, and formalises the research question. Motivated by

the identified problem and research question, we propose a framework for accent gen-

eration and control in ZS-TTS, with specific methods, experimental design, and results

in Sections 3.4, 3.5, and 3.6 respectively. Final conclusions and future work are pre-

sented in Section 3.7. Readers are highly encouraged to visit our demo page1 where

we include audio samples for accent mismatch/hallucination in current SOTA ZS-TTS

(part I) and comparison between different systems and the proposed AccentBox (part

IV).
1https://jzmzhong.github.io/AccentBox-High-Fidelity-Zero-Shot-Accent-Generation

33
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3.2 Data

3.2.1 Pretraining: LibriTTS-R

Derived from LibriTTS (Zen et al., 2019) using speech restoration, LibriTTS-R2 (Koizumi

et al., 2023) is the largest available high-quality English TTS corpus. Due to its broad

and diverse coverage of speakers, we adopt the clean portion of this corpus to pretrain

a ZS-TTS model. The data composition is shown in Table 3.1. Regrettably, since

LibriSpeech (Panayotov et al., 2015), the basis of LibriTTS, is collected with the re-

quirement of having accents closer to US English, most of the utterances in the dataset

is North American accents. Such biased accent coverage is also verified by running

GenAID #X6 system from the previous chapter on all utterances, where 75.21% of the

utterances are predicted as having either “American” or “Canadian” accents.

Subset #Utterances #Speakers Duration (hrs) USA/CAN (%)*

train-clean-100 33,232 247 53.55 76.91

train-clean-360 116,462 904 190.43 74.73

TOTAL 149,694 1,151 243.98 75.21

Table 3.1: Data composition of LibriTTS-R clean portion for pretraining in ZS-TTS.

*: Percentage of utterances predicted as “American” or “Canadian” by GenAID #X6.

3.2.2 Finetuning & Inference: VCTK

As discussed in previous Section 2.2, VCTK (Yamagishi et al., 2012) and L2-ARCTIC

(Zhao et al., 2018) are the two ideal corpora for TTS experiments on accent genera-

tion. Due to time and resource constraints of MSc Dissertation, we are only able to

experiment on L1 accents by finetuning and inferencing on the VCTK corpus (detailed

data composition shown in Table 3.2). One speaker from each accent is reserved for

inference only, while the remaining speakers are used for training and validation. Note

that 3 accents are not seen by GenAID, while 6 accents are hardly seen by AccentBox

(having 0 to 5 speakers).

2https://www.openslr.org/141
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Accent
GenAID AccentBox

Seen?
Test

Speaker

#Speakers in

Train & Valid

Duration(hrs) in

Train & Valid

English Yes p225 32 11.98

American Yes p294 21 8.03

Scottish Yes p234 18 6.70

Irish Yes p245 8 3.03

Canadian Yes p302 7 2.77

Northern Irish No p261 5 2.07

South African Yes p347 3 1.18

Indian No p248 2 0.69

Australian Yes p326 1 0.37

New Zealand Yes p335 0 0.00

Welsh No p253 0 0.00

Table 3.2: Data composition of VCTK for finetuning & inference in ZS-TTS.

Italic font indicates missing/scarce data.

3.2.3 Stimuli for Listening Tests: Comma Gets a Cure

To test the performances of different systems in terms of accent generation, we use an

elicitation passage not covered in training for listening tests, known as Comma Gets

a Cure3 (Honorof et al., 2000). This elicitation passage uses the standard lexical set

words by Wells (1982), enabling examination of English pronunciation in different

accents/dialects across various phonemic contexts. We split the whole passage into 23

sentences, shown in Appendix B.1.

3.2.4 Limitations

There are two major limitations with the data we use.

1) Limited and Imbalanced Coverage of Accents The accent coverage issue reoccurs

in the TTS stage. During pretraining, most of the data are North American accents.

During finetuning, most of the data are English, American, and Scottish accents. Other

3https://www.dialectsarchive.com/CommaGetsACure.pdf
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than such imbalanced coverage, the number of accents covered is also limited.

2) L1 Accents Only Unfortunately, this is largely due to the time and resource con-

straints. We leave the training and evaluation on L2 accents for future work.

3.3 Problem Identification

3.3.1 Accent Mismatch/Hallucination in ZS-TTS

Due to the closed-source nature of most SOTA ZS-TTS systems, we choose the open-

source implementation of VALL-E X4 (Wang et al., 2023a; Zhang et al., 2023c), to

examine the accent-related issues in ZS-TTS systems.

We input a fixed reference text-speech pair to VALL-E X with different target texts.

The reference text-speech pairs are the 24th utterance from different test speakers of

different accents in VCTK, introduced in Section 3.2.2. The target texts are the first

five stimulus in the listening tests, introduced in Section 3.2.3. We also provide the

accent prediction results by GenAID. Note that GenAID is not trained on any synthe-

sised speech and therefore the results may be inaccurate - but it does demonstrate the

inconsistency of accents in the generated speech. Inference results are available at the

“I. Problem Identification” part on our demo page5.

Since VALL-E X is trained without conditioning on any accent-specific informa-

tion other than a general speaker conditioning through the reference text-speech pair,

it demonstrates poor accent consistency in generation - causing severe accent mis-

match/hallucination between the reference speech and generated speech. While we

are looking at accent-related issues, we also realise that there is the unstable genera-

tion issue where the generated speech have skipped/repeated pronunciation (utterance

1 & 2, group I; utterance 4, group II), weird prosody (utterance 2 & 3, group II), etc.

3.3.2 Research Question

The accent mismatch/hallucination problem identified and verified in the previous sec-

tion highlights the need for generating more controllable and higher fidelity accents in

ZS-TTS. In this second stage, we formalise the research question as: To what degree

can pretrained accent embeddings help TTS control and disentangle accent informa-

4https://github.com/Plachtaa/VALL-E-X
5https://jzmzhong.github.io/AccentBox-High-Fidelity-Zero-Shot-Accent-Generation
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tion in speech generation? We seek to explore how the GenAID, built in the first stage,

can facilitate accent generation and control.

3.4 Methods
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Figure 3.1: Model architecture of proposed ZS-TTS system (AccentBox).

The pretrained accent encoder (GenAID) is the same as in Figure 2.3b.

3.4.1 Training: Conditioning on GenAID Embedding

Figure 3.1 shows the model architecture for both training and inference. We build upon

YourTTS (Casanova et al., 2022) instead of LLM-based ZS-TTS due to: 1) high data

and computation requirements, 2) unstable generation (as verified in VALL-E X), and
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3) lack of open-source models/code. Since the same text spoken by speakers of dif-

ferent accents exhibits distinct phonetic and prosodic variations, we condition both the

Transformer-based Text Encoder and the Stochastic Duration Predictor on the accent

embeddings learned by GenAID (system #X6 in previous Chapter 2). Compared with

YourTTS, we replace the one-hot language embeddings in input with GenAID accent

embeddings, as depicted by the pretrained accent encoder (orange block) in Figure 3.1.

Specifically, the 64-dimensional pretrained accent embedding for each utterance

is linearly mapped to match the 192-dimensional character embeddings. This map-

ping allows the accent embedding to be added directly with the character embeddings,

thereby integrating both content and accent information. The resulting combined em-

beddings are then passed into the Transformer-based Text Encoder and the Stochastic

Duration Predictor.

To maximize the benefits of the extensive speaker coverage in the LibriTTS-R

dataset and to expedite the training process across different systems, we employ a

transfer learning approach. Initially, the model is pretrained on the clean portion of

LibriTTS-R and subsequently finetuned on the VCTK corpus. Since LibriTTS-R lacks

explicit accent labels, the accent encoder is omitted during the pretraining phase and

incorporated only during the finetuning stage.

3.4.2 Inference: Inherent/Cross/Unseen Accent Generation

Table 3.3 outlines the different types of inference scenarios explored in this study, with

further details provided below. It is important to note that all reference speech, both

for target speaker and accent information, are from speakers not present in model’s

training data, adhering to the zero-shot requirement.

Accent Generation Target Speaker Target Accent Speaker-Accent Match?

Inherent Unseen Seen Yes

Cross Unseen Seen No

Unseen Unseen Unseen Yes

Table 3.3: Different types of accent generation in AccentBox.

Inherent Accent Generation To examine the hypothesised higher accent fidelity brought

by AccentBox, we use the same audio clip as reference speech for both accent and
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speaker information during inference. The target accent is the inherent accent of the

target speaker.

Cross Accent Generation To examine the hypothesised accent control and disentan-

glement brought by AccentBox, we use separate audio clips for accent and speaker

information during inference. The reference speech for accent is taken from a differ-

ent speaker of a different accent to the target speaker. Essentially, we are performing

accent conversion by generating the target speaker’s voice in a different accent.

Unseen Accent Generation Similar to inherent accent generation, we use the same au-

dio clip as reference speech for both accent and speaker information during inference.

To explore the limits of zero-shot accent generation, we use audio clip with accents

that are unseen by AccentBox. This scenario tests: 1) how generalisable the learned

accent space of GenAID is, and 2) whether AccentBox can generalise synthesis to

unseen accents.

3.5 Experiments

3.5.1 Systems

System Data Accent Info Initialisation

VALL-E X Unknown N/A inference only

Pretrained LibriTTS-R clean N/A from scratch

Baseline VCTK N/A from Pretrained

Accent ID VCTK one-hot embedding from Pretrained

Proposed VCTK GenAID embedding from Pretrained

Table 3.4: Comparison of the training process in different ZS-TTS systems.

Table 3.4 outlines how different systems are obtained. VALL-E X is the one we have

investigated in Section 3.3.1. The Pretrained system is trained on the clean portion

of LibriTTS-R for 1 million steps and used for initialising the remaining three systems.

The Baseline system directly finetunes on VCTK; the Accent ID system finetunes

with 4-dimensional one-hot embeddings of provided discrete accent labels in VCTK,

same as the language embeddings in YourTTS; the Proposed system finetunes with
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continuous 64-dimensional GenAID embeddings. All finetuned systems are trained

for 200 thousand steps.

3.5.2 Configurations

1) Audio Processing To ensure high audio quality in synthesis, all waveforms are

downsampled to 24 kHz as target waveform (rather than 16 kHz in original YourTTS).

To be consistent with pretrained models, input waveforms to the speaker and accent

encoders are still downsampled to 16 kHz.

2) Training Configurations We train all models with a batch size of 32, an initial

learning rate of 0.0002, an exponentially decaying learning rate scheduler with gamma

0.999875, and the AdamW optimizer. All models are trained on a single NVIDIA

Tesla V100S-PCIE-32GB GPU.

3.5.3 Objective Evaluation

1) Accent Cosine Similarity (Acc COS) We use two AID models #X4 and #X6 from

Chapter 2 to extract accent embeddings, and calculate cosine distances between ref-

erence and generated speech, avoiding biases towards Proposed which is conditioned

on embeddings from AID model #X6.

2) Speaker Cosine Similarity (Spk COS) We use Resemblyzer6 (Wan et al., 2018) to

extract speaker embeddings of generated speech and compare them to reference speech

(speaker) for cosine distance calculation.

3) Why no Word Error Rate (WER)? As verified by Sanabria et al. (2023), various

SOTA ASR models have clear bias against accents and WER varies across different

accents in EDACC. Despite wide usage of WER by an ASR model for evaluating ZS-

TTS systems, we choose not to evaluate our systems in such way, as a high WER could

indicate either unclear or more accented generation which makes ASR models harder

to recognise correctly.

4) Accents for Objective Evaluation We use all 9 accents which are seen during

finetuning to compare different systems. New Zealand and Welsh accents are unseen

during training and therefore not able to use for evaluating Accent ID which takes

one-hot accent embedding as input condition.

6https://github.com/resemble-ai/Resemblyzer
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3.5.4 Subjective Evaluation

1) Accent Similarity, Speaker Similarity, and Naturalness To holistically evaluate

different aspects of generated speech, we ask listeners to compare different systems

based on three metrics: i) accent similarity - how similar the generated speech is simi-

lar to the reference speech in terms of accent identity, ii) speaker similarity - how sim-

ilar the generated speech is similar to the reference speech in terms of speaker identity,

and iii) naturalness - how the generated speech sounds like human. The listening test

interfaces are shown in Appendix B.3.

2) ABC Ranking and AB Preference To fully compare all systems, we conduct ABC

ranking tests (Baseline vs Accent ID vs Proposed) for inherent accent generation

and AB preference tests (Accent ID vs Proposed) for cross accent generation. The

Baseline does not take any accent information as input condition and does not possess

cross accent generation ability, therefore not evaluated in the later task.

3) Recruiting Listeners All listeners are recruited through Prolific7 with no known

hearing difficulties and English as native and primary language. For different accents,

we require respective listeners to be born in, spend most time in before 18, and is

currently located in the respective accent region (e.g. the United States, Ireland, etc.).

10 listeners are required for each utterance.

4) Accents for Subjective Evaluation Due to budget constraints, we are only able to

conduct listening tests on two accents. We choose American and Irish accents, with

different data size (8.03 and 3.03 hours respectively) in the finetuning data.

5) Statistical Testing When interpreting the subjective preferences between two sys-

tems, we set the null hypothesis to be adding accent one-hot or GenID embedding does

not bring improvement (i.e. Baseline≥ Accent ID, and Baseline≥ Proposed), and

calculate the p-values which represent the chance the null hypothesis stands.

3.6 Results & Analysis

3.6.1 Overview

Table 3.5 shows the objective evaluation results of 5 systems on 9 accents that are

included in the VCTK training & validation datasets, i.e. seen by the three finetuned

7https://www.prolific.com
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System
Inherent Accent Generation Cross Accent Generation

Acc COS

(#X4)

Acc COS

(#X6)
Spk COS

Acc COS

(#X4)

Acc COS

(#X6)
Spk COS

VALL-E X 0.7801 0.9077 0.8605 / / /

Pretrained 0.7510 0.8911 0.8413 / / /

Baseline 0.7232 0.8989 0.8362 / / /

Accent ID 0.7837 0.9291 0.8386 0.7350 0.8985 0.8073

Proposed 0.8037 0.9336 0.8293 0.7538 0.9067 0.8100

Table 3.5: Objective evaluation results on 9 seen accents.

Acc COS - Accent Cosine Similarity, Spk COS - Speaker Cosine Similarity.

#X4 and #X6 are two AID systems in Chapter 2. Bold font indicates best results.

/: These three systems cannot conduct cross accent generation.

Comparison Accent
Accent Similarity Speaker Similarity Naturalness

Pref. (%) p-value Pref. (%) p-value Pref. (%) p-value

vs Baseline
US 69.1% 1.82E-04 70.0% 1.18E-03 60.0% 1.07E-02

Irish 61.3% 1.40E-02 57.8% 9.40E-02* 33.9% 2.75E-03

vs Accent ID
US 57.4% 8.39E-02* 62.2% 2.05E-02 56.1% 3.38E-02

Irish 65.7% 4.91E-06 59.1% 9.30E-03 43.9% 2.56E-02

Table 3.6: Subjective evaluation results for inherent accent generation.

“Pref.” - preference rate for Proposed. *: weak statistical significance.

Comparison Accent
Accent Similarity Speaker Similarity Naturalness

Pref. (%) p-value Pref. (%) p-value Pref. (%) p-value

vs Accent ID
US 70.0% 1.09E-06 45.2% 3.19E-02 65.2% 1.48E-04

Irish 61.7% 1.33E-02 61.3% 1.14E-02 63.0% 3.10E-02

Table 3.7: Subjective evaluation results for cross accent generation.

“Pref.” - preference rate for Proposed.

Not compared against Baseline due to its inability of cross accent generation.
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systems. Table 3.6 shows the subjective evaluation results for inherent accent gen-

eration by comparing the preferences among the three finetuned systems. Table 3.7

shows the subjective evaluation results for cross accent generation by comparing the

preferences between the only two systems which can perform accent conversion.

For the task of unseen accent generation which is significantly more difficult, re-

quiring TTS models to generalise to unseen accents, we include generated audios in

the demo page with comparison between Baseline and Proposed. We leave more

systematic evaluation of such task for future work. Note that all audios samples in the

demo page are not cherry-picked - we use all stimulus for objective/subjective evalua-

tion and arbitrarily put the first five stimulus for demonstration.

3.6.2 Inherent Accent Generation

Accent Similarity The Proposed system achieves higher accent similarity across both

objective and subjective evaluations. In objective evaluations, regardless of which

model is used to extract accent embeddings, the Proposed system outperforms the

other systems, including the open-source VALL-E X, which is trained on a larger dataset

with more model parameters. In subjective evaluations, the Proposed system con-

sistently outperforms both the Baseline and Accent ID systems in generating both

American and Irish accents. These results collectively demonstrate that the Proposed

system has higher accent fidelity in the task of inherent accent generation.

Speaker Similarity The Proposed system shows higher speaker similarity in subjec-

tive evaluations, contrasting with the lower speaker cosine similarity scores in objective

evaluations. This discrepancy may arise from two reasons: 1) The speaker embed-

dings might be biased towards more common accents due to the training data used in

the speaker verification model. 2) Listeners may not fully separate accent and speaker

identities in their perception, relating higher accent similarity with higher speaker sim-

ilarity. Further research is needed to develop more effective methods for evaluating

speaker similarity when the generated speech include varying accents.

Naturalness The Proposed system demonstrates higher naturalness when generating

the American accent compared to the other two systems, but it shows lower prefer-

ence rates for the Irish accent. We hypothesize that this discrepancy may be due to

two reasons. 1) Difference in data size: With only 3.03 hours of Irish accent data in

the training set, the more granular accent conditioning provided by the GenAID em-

beddings likely requires a larger amount of data to accurately model diverse accents.
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These continuous embeddings capture not only country-level accent labels but also

more fine-grained utterance-specific accent variations. Further research is needed to

explore this hypothesis, especially with more extensive accented data available dur-

ing finetuning. 2) Monotonic prosody in the reference speech: As ZS-TTS systems

are highly sensitive to reference speech with frequently unstable speech generated, it

could be that the Proposed system picks up more of the monotonic prosodic pattern

in the Irish reference speech - leading to overall worse naturalness.

3.6.3 Cross Accent Generation

Lower Objective Similarity The overall objective results for cross accent generation

is lower than those of inherent accent generation, as shown in Table 3.5. This demon-

strates that accent conversion is a more difficult task than the previous inherent accent

generation.

Accent/Speaker Similarity The Proposed system shows higher accent similarity in

both objective and subjective evaluations, demonstrating higher accent fidelity in ac-

cent conversion. The subjective speaker similarity results are controversial, with higher

subjective similarity preference on Irish but not on American accent. We hypothesis

that this could be again the listeners’ perception problem - regarding the generated

speech with higher accent similarity to be more distant in terms of speaker identity

from the original reference speech (speaker) which is in English accent.

Naturalness The Proposed system demonstrates higher naturalness on both accents

during accent conversion. We hypothesise that this could be due to the more consistent

accent being generated in accent conversion. The Accent ID system learns the accent

embeddings by one-hot labels on limited TTS data, inferior to the pretrained accent

embeddings in the Proposed system. Swapping one-hot accent embedding from one

accent to another forces the model to generalise to unseen speaker-accent pairs using

limited information from the accent embedding, resulting in inconsistent accent and

unnaturalness in the utterance.

3.6.4 Problems of ZS-TTS

A lot of the above problems that zero-shot accent generation suffers are also common

to ZS-TTS. There is simply too little information in one audio clip. Despite the success

of ZS-TTS in engineering and industrial applications, from a speech science perspec-
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tive, where the prosody comes from in the generated speech remain highly unclear - the

reference speech (speaker & accent), the input text, and the stochastic noise for gen-

erative modelling modules, can all determine the generated prosody. More research is

needed in explaining, controlling, and disentangling different factors in the generated

speech in ZS-TTS systems. This study initiates the first step towards accent control

and disentanglement in ZS-TTS, with AccentBox still suffering from numerous other

entangled factors such as prosody.

3.7 Conclusions

In this chapter, we take an initial approach to leverage pretrained accent embeddings

for zero-shot accent generation, achieving higher accent fidelity while maintaining

speaker similarity and naturalness. Our key contributions are:

• To the best of our knowledge, we are among the first to highlight the problem of

accent mismatch/hallucination in ZS-TTS.

• We propose a zero-shot accent generation framework and establish the first bench-

mark for inherent/cross/unseen accent generation, enabling the generation of any

text, speaker, and accent.

• We develop AccentBox, which uses GenAID embeddings for high-fidelity zero-

shot accent generation, showing superior accent similarity in both inherent and

cross-accent scenarios.

To revisit our research question: To what degree can pretrained accent embeddings

help TTS control and disentangle accent information in speech generation? Our re-

sults indicate a decent level of coarse accent control, though challenges like unstable

prosody and inconsistent accent remain. Future work will focus on:

• 1) Foreign Accent Generation (FAC) We will adapt our framework for FAC,

particularly in CAPT, and comparing AccentBox’s performance in L2 accent

generation with existing approaches.

• 2) Accent Modelling We seek to incorporate multi-level accent modelling (Zhou

et al., 2024b) to model different levels of accent variations in speech.
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• 3) Phoneme vs Character Input We will investigate the use of a base lexicon

for improved pronunciation modeling and stability in ZS-TTS, while free from

reliance on an accent-specific front-end.



Chapter 4

General Discussion

In this chapter, we reflect on three challenging questions arising from the results and

analyses of GenAID and AccentBox.

4.1 How should we define accents in data collection?

In both AccentBox and GenAID, accent labels based on region or country are of-

ten either too broad, like the varied American accents, or too narrow, as seen with

the similar New Zealand and Australian accents. Accents are not just continuous but

also multidimensional. L2 accents, in particular, don’t fit on a simple scale of “ac-

centedness” but instead occupy a complex, multidimensional space. Defining accents

is inherently difficult, and this challenge complicates both accent discrimination and

generation modeling. Our current answer to the question: We don’t know.

4.2 Is full speaker-accent disentanglement desirable and

achievable?

In AccentBox, evaluating speaker similarity in cross-accent generation is challeng-

ing, especially when the reference and generated speech differ in accent. From a

human perception standpoint, accent is crucial for distinguishing speakers, suggest-

ing that complete speaker-accent disentanglement may not be desirable. Similarly, in

GenAID, even with minimal residual speaker information, a 0.23 f1 gap between seen

and unseen speakers remains. The model may still memorize speaker-accent mappings

despite attempts to disentangle them. Therefore, we question whether full disentangle-

47
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ment is even achievable. Our tentative answer to the question: Maybe not.

4.3 Are utterance-level AID and ZS-TTS ill-defined tasks?

Despite broad applications for AID/ZS-TTS based on a single short utterance, our

experiments with GenAID and AccentBox suggest that these might be ill-defined tasks.

One utterance provides too little information, making it difficult even for experts to

discern certain accents. Worse, models are forced to predict an accent without reliable

confidence levels. The challenge is to train AID models that can output “unknown”

when there is too little information, or ZS-TTS models that default to a neutral or

standard accent when the reference speech provides insufficient accent information.

We leave these issues for future work.



Chapter 5

Conclusions & Future Work

This thesis introduces zero-shot accent generation and a novel two-stage pipeline as a

benchmark. In the first stage AID, we verify, quantify, and address the problems of

speaker-accent entanglement and biased prediction across accents, with SOTA perfor-

mance of 0.56 f1 score in 13-accent classification on unseen speakers. In the second

stage zero-shot accent generation, we highlight and address the problem of accent

mismatch/hallucination in ZS-TTS, with better accent fidelity in inherent/cross accent

generation while enabling unseen accent generation.

In the future, we will prioritise L2 accent generation and expanding zero-shot ac-

cent generation to cover more accents. Additionally, we aim to enhance accent disen-

tanglement and control using a factorised neural codec, as proposed in the latest SOTA

ZS-TTS, NaturalSpeech 3 (Ju et al., 2024).
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Appendix A

GenAID: Cleaning Accent Labels

Original Label Cleaned Label

United States English American

England English English

Canadian English Canadian

Australian English Australian

Irish English Irish

Scottish English Scottish

New Zealand English New Zealand

India and South Asia
(India, Pakistan, Sri Lanka) South Asian

South African accent,
Southern African (South Africa,

Zimbabwe, Namibia)
Southern African

Hong Kong English Hong Kong

Filipino Filipino

Malaysian English Malaysiam

Singaporean English Singaporen

Table A.1: Mapping from original lables to cleaned labels in data processing

for GenAID, incl. 7 L1 accents (top) and 6 L2 accents (bottom).
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Appendix B

AccentBox: Evaluation Materials

B.1 Stimuli for Listening Tests: Comma Gets a Cure

The content information in inference is provided by the stimuli below taken from

Comma Gets a Cure1 (Honorof et al., 2000).

1. Well, here’s a story for you.

2. Sarah Perry was a veterinary nurse who had been working daily at an
old zoo in a deserted district of the territory.

3. So, she was very happy to start a new job at a superb private practice in
North Square near the Duke Street Tower.

4. That area was much nearer for her and more to her liking.

5. Even so, on her first morning, she felt stressed.

6. She ate a bowl of porridge, checked herself in the mirror and washed
her face in a hurry.

7. Then she put on a plain yellow dress and a fleece jacket, picked up her
kit and headed for work.

8. When she got there, there was a woman with a goose waiting for her.

9. The woman gave Sarah an official letter from the vet.

10. The letter implied that the animal could be suffering from a rare form
of foot and mouth disease, which was surprising, because normally you
would only expect to see it in a dog or a goat.

11. Sarah was sentimental, so this made her feel sorry for the beautiful
bird.

12. Before long, that itchy goose began to strut around the office like a
lunatic, which made an unsanitary mess.

1https://www.dialectsarchive.com/CommaGetsACure.pdf

60



Appendix B. AccentBox: Evaluation Materials 61

13. The goose’s owner, Mary Harrison, kept calling, ”Comma, Comma,”
which Sarah thought was an odd choice for a name.

14. Comma was strong and huge, so it would take some force to trap her,
but Sarah had a different idea.

15. First she tried gently stroking the goose’s lower back with her palm,
then singing a tune to her.

16. Finally, she administered ether.

17. Her efforts were not futile.

18. In no time, the goose began to tire, so Sarah was able to hold on to
Comma and give her a relaxing bath.

19. Once Sarah had managed to bathe the goose, she wiped her off with a
cloth and laid her on her right side.

20. Then Sarah confirmed the vet’s diagnosis.

21. Almost immediately, she remembered an effective treatment that re-
quired her to measure out a lot of medicine.

22. Sarah warned that this course of treatment might be expensive - either
five or six times the cost of penicillin.

23. I can’t imagine paying so much, but Mrs. Harrison - a millionaire
lawyer - thought it was a fair price for a cure.

B.2 Reference Speech for Listening Tests

The speaker and accent information in inference is provided by the reference speeches.

All reference speeches can be accessed and downloaded at: https://groups.inf.

ed.ac.uk/cstr3/s2526235/listening_tests/AccentBox_v1.2/Speech_Prompts/.

We take the 24th utterance for all eleven test speakers in VCTK (Yamagishi et al.,

2012).

B.3 Questionnaires for Listening Tests

To evaluate accent similarity, we ask the participants to rank two or three audio sam-

ples based on their accent similarity to the reference speech (accent), shown in Figure

B.1. Similarly, to evaluate speaker similarity, we ask the participants to rank two or

three audio samples based on their speaker similarity to the reference speech (speaker),

shown in Figure B.2. And finally, to evaluate naturalness, we ask the participants to

rank two or three audio samples based on which one is more like a human would say

it without reference speech, shown in Figure B.3.
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Figure B.1: Listening test interface for evaluating accent similarity.

Figure B.2: Listening test interface for evaluating speaker similarity.
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Figure B.3: Listening test interface for evaluating naturalness.

All questionnaires are available at the following URLs, shown in Table B.1.

Generation Accent URL

Inherent
American

https://edinburgh.eu.qualtrics.com/jfe/

form/SV 3UEtXMT2Q54EE5M

Irish
https://edinburgh.eu.qualtrics.com/jfe/

form/SV 72qDqacbRZijc6q

Cross

American
https://edinburgh.eu.qualtrics.com/jfe/

form/SV 8ldW0Hscf6tDFK6

Irish
https://edinburgh.eu.qualtrics.com/jfe/

form/SV 51kCvIP9Zu89uvQ

Table B.1: Listening test URLs to various questionnaires.


